
ICT167 ANS6

Sorting algorithms:

 Allows you to sort array of values into some order-

o Numerical- sort smallest  highest

o Alphabetical- sort ascending or descending alphabets

 The sorting algorithm approaches include- bubbles sort, insertion sort, selection sort, and

quick sort (not in lecture)

 Array has two parts. Unsorted list, and sorted list

Insertion sort: [I GET IT]

 So we take the item then compare the number with things that previously occurred (been

checked). If it are smaller we insert it in the location where smaller number was and then we

move the bigger number (new bigger) to the right. We do it for each number on the left.

 Sorts data in (ascending i.e smallest  largest)

Java- (ascending i.e smallest  largest) (Insertion sort)

Selection sort:

 Sorts data items in ascending or descending order

 The idea is the find the smallest (unsorted element) and add it to the front (end of sorted

list)

High level Psuedocode (ascending i.e smallest  largest)

Repeat

 Find the smallest item in the unsorted array

 Swap the smallest item with first element of unsorted array

Until the array is sorted

Java- (ascending i.e smallest  largest) Selection sort

//Add video explaining selection sort

Bubble sort/sinking sort:

 Easiest algorithm but least efficient

 Sorts data items in ascending or descending order

 The idea compare the two and slowly swap them around to sort them

Java- (ascending i.e smallest  largest) (bubble sort)

Searching algorithms:

 Allows you to efficiently search there an array for a value

 The searching algorithms include- Sequential search and binary search

Sequential search/Linear search:

 Idea is start at the beginning of array and proceed in sequence until value is found or end of

array is reached

Java- Sequential search

Boolean found = false;

if (studentList.length > 0) {

 int i= 0;

 while (!found) && (i < studentList.legnth)) {

 currentStudent = studentList[i];

 if(currentStudent == neededStudent) {

 found = true;

 i++;

 }

 }

}

Binary search:

 MUST BE SORTED

 Start in the middle element and either search the first half or second half depending on

whether search item is greater or less than the middle element

 Keep dividing the array by half until the item is found

Java- Binary search

	ICT167 ANS6

