ICT167 ANS6

Sorting algorithms:

e Allows you to sort array of values into some order-
o Numerical- sort smallest <-> highest
o Alphabetical- sort ascending or descending alphabets
e The sorting algorithm approaches include- bubbles sort, insertion sort, selection sort, and
quick sort (not in lecture)
e Array has two parts. Unsorted list, and sorted list

Insertion sort: [| GET IT]

e So we take the item then compare the number with things that previously occurred (been
checked). If it are smaller we insert it in the location where smaller number was and then we
move the bigger number (new bigger) to the right. We do it for each number on the left.

e Sorts data in (ascending i.e smallest = largest)

Java- (ascending i.e smallest - largest) (Insertion sort)

public static int[] CalcNmmbersSorted(int[] userNumbers) { |
int[] sortMumbers = userNumbers;
for(int i = 1; i <= sortNumbers.length-1; i+4) {

int temp = sortMumbera[i];
int §=10;

while(temp » sortNumbers[i]) {

1=3L

for{fint k=1; k> 3; k=) {

sortNumbers[k] = sortNumbers[k-1];

sorthumbers[j] = temp;

return sortiumbers;



Selection sort:

e Sorts data items in ascending or descending order
e Theidea is the find the smallest (unsorted element) and add it to the front (end of sorted

list)

High level Psuedocode (ascending i.e smallest = largest)

Repeat
Find the smallest item in the unsorted array

Swap the smallest item with first element of unsorted array

Until the array is sorted

Java- (ascending i.e smallest - largest) Selection sort

Procedure Arraylist SelectOptiond (ArrayList officalStudentList) //Selection sort ascending (smallest to largest) of ARRRY

int[] officalStudentlist = {53 ,21,3,6,101};
B for (int i =0; i < officalStudentList.length - 1; i++) { //i Goes through array one element at a time. No short cuts. Start element 0, 1,23, 4, ...,

int indexOfUnsortedsmallest = i;

H for {int j =1 + 1; j < officalStudentlist.length; j++) { //J starts at element next element after i,

[/Inner loop goes through all element in array. But always one element after i

int currentUnsortedimalllum = officalStudentlist[index0fUnsortedSmallest];
int nextNum = officalStudentlist[j];

H if (nexthum < currentUnsortedSmallNum) { //Stores current smallest element in a variable and goes through all element and keep comparing
index0fUnsortedSmallest = ;
}

}

int unsortedSmallestMumber = officalStudentlist[index0fUnsortedSmallest]; //Gets the value of unsorted
officalStudentlist [index0fUnsortedSmallest] = officalStudentList[i]; //On store the

officalStudentlist[i] = unsortedSmallestNumber; //Stores the value of unsortedSmallestNumber --> front of arr

ntList[i] value (previous fromt)

/SKIPPED

EndProcedure

//Add video explaining selection sort



Bubble sort/sinking sort:

e Easiest algorithm but least efficient
e Sorts data items in ascending or descending order
e The idea compare the two and slowly swap them around to sort them

Java- (ascending i.e smallest = largest) (bubble sort)

115 = public static int[] CalcNumbersSortedBubble(int[] userNumbers) {
116

117 for(int i = 0; i <userNumbers.le poi++)
118 for (int j=0; j<userNumbers.l i; d++) {
1145

120 if (userNumbers[j] > userNumbers[j + 1]) {
121 int temp = userNumbers[j + 1]:

122 userNumbers[j + 1] = userNumbers[j]:
123 userNumbers[j] = temp;

124

125

126

127 }

128 return userNumbers;

130
121

Searching algorithms:

e Allows you to efficiently search there an array for a value
e The searching algorithms include- Sequential search and binary search

Sequential search/Linear search:

e Idea is start at the beginning of array and proceed in sequence until value is found or end of
array is reached

Java- Sequential search

Boolean found = false;
if (studentList.length > 0) {
int i= 0;
while (!found) && (i < studentList.legnth)) {
currentStudent = studentList[i];
if (currentStudent == neededStudent) {
found = true;

it++;




Binary search:

e MUST BE SORTED

e Startin the middle element and either search the first half or second half depending on
whether search item is greater or less than the middle element

o Keep dividing the array by half until the item is found

Java- Binary search

83 int first = (;

G int mid;

b int last = gortediumbers,length - 1;
86
87 while (first <= last) { //Loop through the first or last half of array
il
84 mid = (first + last) / 2; //Determine the half
40

41 if (sortedNumbersmid] == key) { //Check whether the element at half way index 1s found in array

52 System, out.print("In array");
& return;

9 last = mid - 1; //Determine the last index in the first half

% } else

97 first =mid + 1; //Determine the first element in the last half
4 }

4 }

100
101 System,out.print("Not in array");

113

4 } else if (key < sortedNumbers[mid]){ //Check if what we are looking for is in the first half



	ICT167 ANS6

